A nonsense mutation in the tumour suppressor adenomatous polyposis coli (APC) is sufficient to cause colorectal cancer in humans

نویسندگان

  • Scott A. Nelson
  • Zhouyu Li
  • Ian P. Newton
  • David Fraser
  • Rachel E. Milne
  • David M. A. Martin
  • David Schiffmann
  • Xuesong Yang
  • Dirk Dormann
  • Cornelis J. Weijer
  • L. Appleton
  • Inke S. Näthke
چکیده

940 INTRODUCTION A nonsense mutation in the tumour suppressor adenomatous polyposis coli (APC) is sufficient to cause colorectal cancer in humans and animal models (Nandan and Yang, 2010; Kwong and Dove, 2009). Hereditary and sporadic cancers commonly carry nonsense mutations in APC that result in the expression of Nterminal fragments of the APC protein, so that the protein lacks the more C-terminally located -catenin-, tubulin-, actinand EB1binding domains (Phelps et al., 2009; Näthke, 2004). Tumorigenesis resulting from APC mutations has been attributed mainly to activation of -catenin-regulated transcription (Morin, 1999; Barker et al., 2000). Recent studies have begun to highlight the importance of -catenin-independent functions of APC (Okada et al., 2010; Mili et al., 2008). For instance, the phenotype produced by completely deleting the entire gene from one allele of APC seems to be more severe than that produced when this allele encodes an N-terminal APC fragment [as in APCMin/+ mice or the corresponding individuals with familial adenomatous polyposis (FAP)], despite lower levels of active -catenin being present in mice with the gene deletion (Cheung et al., 2010). Furthermore, individuals with an APC allele that leads to production of an N-terminal APC protein fragment that only contains about 150 amino acids (compared with the 850 amino acids encoded by the APCMin allele) present with a much less severe case of the disease, called attenuated FAP (Spirio et al., 1993; Lamlum, 1999). Our understanding of the nature and impact of additional functions of APC and how direct effects of retained N-APC fragments contribute to its role in tumorigenesis remains incomplete (Phelps et al., 2009; Näthke, 2004). Colorectal cancer usually follows the loss of the second APC allele, through loss of heterozygosity. It was recently shown that stepwise mutations of the two APC alleles resulted in dramatically faster tumorigenesis when compared with simultaneous mutation (Fischer et al., 2011). This suggests that the details of how APC heterozygosity and complete loss is achieved affect the specific phenotype of the resulting tumours and adenoma, consistent with the idea that the specific APC fragments that are expressed contribute to this process. One function that is likely to be differentially affected by the length of N-terminal APC fragments is the ability of APC to regulate cytoskeletal proteins. Based on APC interactions with actin and microtubules, we hypothesized that heterozygosity for APC (as in APCMin/+), characterized by expression of an N-terminal fragment Disease Models & Mechanisms 5, 940-947 (2012) doi:10.1242/dmm.008607

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma

Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...

متن کامل

Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells.

Colorectal cancer (CRC) is a major cause of cancer-related mortality. A contributing factor to the progression of this disease is sporadic or hereditary mutation of the adenomatous polyposis coli (APC) gene, a negative regulator of the Wnt signalling pathway. Inherited mutations in APC cause the disorder familial adenomatous polyposis (FAP), which leads to CRC development in early adulthood. Ho...

متن کامل

Frameshift Mutations (Deletion at Codon 1309 and Codon 849) in the APC Gene in Iranian FAP Patients: a Case Series and Review Of The literature

Familial adenomatous polyposis (FAP) is responsible for <1% of colorectal cancer (CRC) cases and is inherited as an autosomal dominant trait. Patients generally present hundreds to thousands of adenomas and develop colorectal cancer by age 35- 40 if left untreated. Here we report four patients with germline frameshift mutation (small deletion) at exon 15 of adenomatous polyposis coli (APC) tumo...

متن کامل

The role of the Wnt signalling pathway in colorectal tumorigenesis.

Colorectal cancer (CRC) is the second largest cause of cancer-related deaths in Western countries. CRC arises from the colorectal epithelium as a result of the accumulation of genetic alterations in defined oncogenes and tumour suppressor genes. Mutations in the tumour suppressor APC (adenomatous polyposis coli) genes occur early in the development of CRC and lead to the stabilization of the Wn...

متن کامل

A Patient with Interstitial 5q21 Deletion, Familial Adenomatous Polyposis, Dysmorphic Features, and Profound Neurologic Dysfunction

     Familial adenomatous polyposis (FAP) is a hereditary autosomal dominant cancer syndrome, results from germ line mutation or deletion of the Adenomatous Polyposis Coli (APC) gene on chromosome 5q21. Patients with FAP suffer from multiple polyps mainly at the colorectal region as well as other parts of the gastrointestinal tract, which has propensity to transform into carcinoma. FAP has also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012